
Cloud native
for agile integration
Murali Sitaraman
Geo-Lead Integration
IBM Automation, EMEA
msit@ch.ibm.com

IBM Labs Come To You
26. April
Cologne

mailto:c.tag@ibm.com

Evolution to agile integration

APIM
APIM

API Management

APIM
API Management

APIM

Gateway

Integration
Integration Int.

3

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s

of

re
co

rd

API Management

Socialization/monetization Re-platforming Application autonomy

API Management

Centralized
ESB

Fine-grained
integration
deployment

Decentralized
integration
ownershipSocialized APIs

Webinar http://ibm.biz/agile-integration-webinar eBooklet http://ibm.biz/agile-integration IBM Redbook http://ibm.biz/agile-integration-redbook

APIM
APIM

© 2022 IBM Corporation

http://ibm.biz/agile-integration-webinar
http://ibm.biz/agile-integration
http://ibm.biz/agile-integration-redbook

“cloud native” means

© 2021 IBM Corporation 4

People
and

Process

Architecture
and

Design

Infrastructure
and

Technology

fully leveraging the
uniqueness of cloud

© 2022 IBM Corporation

“Cloud native” means

Agility and Productivity
– Enable rapid innovation that is

guided by business metrics.
– De-risk changes and maintenance

and keep environments current.
Resilience and Scalability

– Target continuous availability that is
self-healing and downtime-free.

– Provide elastic scaling and the
perception of limitless capacity.

Optimization and Efficiency
– Optimize the costs of infrastructural

and human resources.
– Enable free movement between

locations and providers.

© 2022 IBM Corporation
5

People
and

Process

Architecture
and

Design

Infrastructure
and

Technology

Platforms that abstract
complexities of infrastructure

Solutions that
leverage

infrastructure
abstractions

Automation
of full

component
lifecycle

Autonomy
and agility in
development

and operations

fully leveraging the
uniqueness of cloud

…through…

to achieve…

http://ibm.biz/cloudnativedefined

http://ibm.biz/cloudnativedefined

Ingredients of cloud native

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment

Zero
trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

People
and process

Architecture
and design

Technology
and infrastructure

© 2022 IBM Corporation

Microservice architecture

Ingredients of cloud native – an alternative grouping

Initial concepts Adoption hurdles Success factors

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment Zero

trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

Container technology

Agility through
Automation

Sustainably empowered

Secured by default

Managed in aggregate

Pe
op

le

Ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy

© 2022 IBM Corporation

Microservice architecture

Ingredients of cloud native – an alternative grouping

Initial concepts Adoption hurdles Success factors

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment Zero

trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

Container technology

Agility through
Automation

Sustainably empowered

Secured by default

Managed in aggregate

Pe
op

le

Ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy

© 2022 IBM Corporation

C. C. C. C. C. C. C. C.

VM
O/S

VM Host

© 2022 IBM Corporation

The move to containers is very different from the
preceding move to virtual machines

Physical servers

O/S

App.
Serv.

O/S

App.
Serv.

O/S

App.
Serv.

App.
Serv.

Container Host

Virtual machines Containers

VM
O/S

App.
Serv.

VM
O/S

App.
Serv.

Container Platform

Lift and shift to

• Optimize hardware
• Simplify provisioning

Refactor to realign responsibilities of application, app
server and operating system, networking and
storage to facilitate

• Lifecycle agility through automation
• Rationalized operations across all runtime types
• Discrete, agnostic resilience and scalability

HA2HA1 DR DR

Load Bal. Load Bal.

P1

P1

P2

P2 D2

D1

D1

D2

LB LB

HA Manager HA Mgr

Author, build,
deploy

c

Traditional vs Cloud native

• Dedicated HA pairs
• Scaling manual and vertical
• Defined nodes
• Explicit install and configure
• Explicit cold/warm HA & DR
• Dedicated OS instances/HW
• Deploy to running shared servers
• Replication across DCs
• Administer live shared servers
• Code deployed to shared servers

a b
c

re
pl

ic
at

io
na b

Product component Product artefact

a

• Elastically scaled containers
• Pooled underlying resources,
• Decoupled, fine-grained containers
• Implicit HA/DR
• Image based install and deployment
• Deployed and updated declaratively
• Administer by declarative infrastructure as code

Container
platform

Load bal.

Pipeline

Release
Image

repository
Authoring

Load bal. Load bal.

Monitoring

Log aggregator

Template Image
repository

a

a

a

a
a

a

b
b

c
c

c

a

a

Tr
ad

iti
on

al
C

lo
ud

-n
at

iv
e

© 2022 IBM Corporation

Microservice architecture

Ingredients of cloud native – an alternative grouping

Initial concepts Adoption hurdles Success factors

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment Zero

trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

Container technology

Agility through
Automation

Sustainably empowered

Secured by default

Managed in aggregate

Pe
op

le

Ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy

© 2022 IBM Corporation

Microservice architecture

Microservice architecture – key concepts

Fine-grained components
• Function driven granularity
• Self-contained components
• Independent lifecycles, scaling and resilience

Appropriate decoupling
• Clear ownership boundaries
• Formalised interfaces (API and event)
• Independent persistence

Minimal state
• Uncomplicated horizontal scaling
• No caller or session affinity
• No two phase commits

Immutable deployment
• Image based deployment
• No runtime administration
• Updates and rollbacks by replacement Faster iteration cycles,

bounded contexts,
autonomous teams

Agility

Elastic scalability,
workload orchestration,
cloud infrastructure

Scalability

Minimized dependencies,
discrete failover,
fail fast, start fast

Resilience

Monolithic
Application

µServiceµServiceµService

µServiceµServiceµService

µServiceµServiceµService

Microservice Application

* These are key architectural aspects of microservices. Clearly a full microservices approach is much broader than this, overlapping heavily with cloud native as a concept

© 2022 IBM Corporation

Integration

Fine grained deployment, Appropriate decoupling and Minimal state

Find grained deployment doesn’t mandate a move to containers, but it will be easier in containers

API and Event Gateway

Messaging

Centralized ESB
and messaging

Fine grained integration and
messaging deployment

Portal

Manager

© 2022 IBM Corporation

Microservice architecture

Ingredients of cloud native – an alternative grouping

Initial concepts Adoption hurdles Success factors

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment Zero

trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

Container technology

Agility through
Automation

Sustainably empowered

Secured by default

Managed in aggregate

Pe
op

le

Ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy

© 2022 IBM Corporation

Microservice architecture

Ingredients of cloud native – an alternative grouping

Initial concepts Adoption hurdles Success factors

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment Zero

trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

Container technology

Agility through
Automation

Sustainably empowered

Secured by default

Managed in aggregate

Pe
op

le

Ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy

© 2022 IBM Corporation

Agility through Automation

Agile methods
• Short, regular iteration cycles.
• Intrinsic business collaboration
• Data driven feedback

Lifecycle automation
• Continuous Integration – Build/test pipelines
• Continuous Delivery/Deployment – Deploy, verify
• Continuous Adoption – Runtime currency

DevOps and site reliability engineering (SRE)
• Collaboration and combination of dev. and ops.
• Shift left for operational concerns
• Rapid operational feedback and resolution

Operational automation
• Infrastructure as code
• Repository triggered operations (GitOps)
• Site reliability engineering

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

© 2022 IBM Corporation

18© 2022 IBM Corporation

Hardware

Operating system

Language/product
runtime

Topology

Artefacts and fixed
configuration

Environment
configuration

Build Run

Traditional

Product
infrastructure
specialist

Base
infrastructure
specialist

Base
infrastructure
operations

Application
Developer

Product
Operations

Artefacts and fixed
configuration

Environment
configuration

Cloud native

Operations /
Site Reliability
Engineer (SRE)

Application
Developer

Hardware

Operating system

Language/product
runtime

Topology
Templatized

Dynamically
provisioned

Automation

Platform
managed

Build Run

Agility through Automation

Agile methods
• Short, regular iteration cycles.
• Intrinsic business collaboration
• Data driven feedback

Lifecycle automation
• Continuous Integration – Build/test pipelines
• Continuous Delivery/Deployment – Deploy, verify
• Continuous Adoption – Runtime currency

DevOps and site reliability engineering (SRE)
• Collaboration and combination of dev. and ops.
• Shift left for operational concerns
• Rapid operational feedback and resolution

Operational automation
• Infrastructure as code
• Repository triggered operations (GitOps)
• Site reliability engineering

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

© 2022 IBM Corporation

Container
Platform

Git

Lifecycle automation and Operational automation

Integration
runtime image

ii

Code Build OperateDeploy

i

Operator

Messaging
runtime image

q q

Integration
code

q Queue manager
definition

q Operator

CR

CR

q

i

Pipeline(s)
• Git clone
• Dependencies
• Validate
• Package
• Build image
• Test
• Clean up
• Trigger deploy?

Operator
• Create routes for access
• Provision storage
• Service mesh policy
• Deploys credential
• Wiring to dependencies
• Rollout policy
• Upgrade management
• Multi-part solution deploy?

i i

Operator
• HA/auto recovery
• Auto scaling
• Log collation and

interpretation
• Alerts

i

Open API
SpecificationOAS

Operational
automation

Build
automation

CRD Custom resource

Deployment
automation

© 2022 IBM Corporation

Code assist
• Flow assembly
• Graphical mapping
• Intelligent connectors
• Pattern templates
• RPA interfaces

Code
automation

Infrastructure as code assist
• Validated form entry
• Guardrails

Kubernetes Cluster

Namespace

Deployment

Pod

Ingress

Service

Role

Role Binding

Service Account

Namespace

Container

Pod

Ingress
Service

Role

Role Binding

Service Account

Some of the Kubernetes objects involved in a deployment
To deploy a container into Kubernetes, you have to define these!

kubectl apply –f mydeployment.yaml

Container

© 2022 IBM Corporation

Kubernetes Cluster

The role of a Kubernetes “Operator”
Translate your requirements (custom resource) into Kubernetes objects, instantiate them, and look after them

“IntegrationServer”
Custom Resource

App
Connect
Operator

kubectl apply –f
myIntegrationServer.yaml

Namespace

Deployment

Pod

Ingress

Service

Role

Role Binding

Service Account

Namespace

Container

Pod

Ingress
Service

Role

Role Binding

Service Account

Container

© 2022 IBM Corporation

Operator maturity model

Source: https://docs.openshift.com/container-platform/4.9/operators/understanding/olm-what-operators-are.html#olm-maturity-model_olm-what-operators-are

© 2022 IBM Corporation

https://docs.openshift.com/container-platform/4.9/operators/understanding/olm-what-operators-are.html#olm-maturity-model_olm-what-operators-are

Example definition of an
IntegrationServer
custom resource object

This yaml file instructs the App Connect
Operator to

• Deploy a single replica of the IBM App
Connect Certified Container,
allocating it 1/3 of a CPU, and making
the container available via HTTP

• Pull down a bar file from a remote
location, and load it on start up

The Operator will translate those
requirements into all the necessary
Kubernetes objects

apiVersion: appconnect.ibm.com/v1beta1
kind: IntegrationServer
metadata:

name: http-echo-service
namespace: ace-demo
labels: {}

spec:
adminServerSecure: false
barURL: >-

https://github.com/amarIBM/hello-world/raw/master/HttpEchoApp.bar
configurations:

- github-barauth
createDashboardUsers: true
designerFlowsOperationMode: disabled
enableMetrics: true
license:

accept: true
license: L-KSBM-C37J2R
use: AppConnectEnterpriseProduction

pod:
containers:

runtime:
resources:

limits:
cpu: 300m
memory: 350Mi

requests:
cpu: 300m
memory: 300Mi

replicas: 1
router:

timeout: 120s
service:

endpointType: http
version: '12.0'

https://community.ibm.com/community/user/integration/blogs/amar-shah1/2021/11/21/deploy-a-simple-flow-onto-red-hat-openshift-using

https://community.ibm.com/community/user/integration/blogs/amar-shah1/2021/11/21/deploy-a-simple-flow-onto-red-hat-openshift-using

Example definition of an
IntegrationServer
custom resource object

This yaml file instructs the App Connect
Operator to

• Deploy a single replica of the IBM App
Connect Certified Container, allocating
it 1/3 of a CPU, and making the
container available via HTTP

• Pull down a bar file from a remote
location, and load it on start up

The Operator will translate those
requirements into all the necessary
Kubernetes objects

apiVersion: appconnect.ibm.com/v1beta1
kind: IntegrationServer
metadata:

name: http-echo-service
namespace: ace-demo
labels: {}

spec:
adminServerSecure: false
barURL: >-

https://github.com/amarIBM/hello-world/raw/master/HttpEchoApp.bar
configurations:

- github-barauth
createDashboardUsers: true
designerFlowsOperationMode: disabled
enableMetrics: true
license:

accept: true
license: L-KSBM-C37J2R
use: AppConnectEnterpriseProduction

pod:
containers:

runtime:
resources:

limits:
cpu: 300m
memory: 350Mi

requests:
cpu: 300m
memory: 300Mi

replicas: 1
router:

timeout: 120s
service:

endpointType: http
version: '12.0'

https://community.ibm.com/community/user/integration/blogs/amar-shah1/2021/11/21/deploy-a-simple-flow-onto-red-hat-openshift-using

https://community.ibm.com/community/user/integration/blogs/amar-shah1/2021/11/21/deploy-a-simple-flow-onto-red-hat-openshift-using

ACE “Configurations”
The ACE Operator provides an abstraction from how configuration is stored and processed

Kubernetes Platform

Container

ACE
Integration Server

Process
“Configurations”

Integration

“IntegrationServer”
Custom Resource

App
Connect
Operator

Create
integration

server
containerApply CRD using

standard Kubernetes
commands

1

2

3

etcd

CR 1

“Configuration”
Custom Resource

0

Create any environment
specific information

required by the
integration

“Configuration”
Custom Resource

“Configuration”
Custom Resource

CR 2

CR 3

Secret 2

© 2022 IBM Corporation

/home/
aceuser/
ace-server/
server.conf.yaml
odbc.ini
run/
overrides/
config/
registry/
integration_server/
CurrentVersion/
DSN/

generic/
db2cli.ini
odbcinst.ini

What does the certified container actually do with the “Configurations”?
(using a connection to an ODBC database as an example)

“Work directory” of Integration Server

The default configuration file for the Integration Server

The primary properties file in relation to ODBC

Message flows and policies

Data source credentials (where “dbparams” end up)

Other user supplied files

© 2022 IBM Corporation

This presentation will focus on one function of the Operator for IBM App Connect for illustration purposes

Container

Integration Server

Integration
“IntegrationServer”

“Configuration” Custom Resource

“Dashboard”

“Designer Authoring”

“Switch Server”

App Connect
Operator

© 2022 IBM Corporation

What does the App Connect Operator do?

Certified Container

Integration Server

Integration
“IntegrationServer”

“Configuration” Custom Resource

“Dashboard”

“Designer Authoring”

“Switch Server”

App Connect
Operator

Deploys containerised
App Connect Enterprise

integrations and manages their
associated environment-specific

configurations

Deploys the App Connect
Dashboard componentry

Deploys the App Connect
Designer Authoring componentry

Deploys App Connect
Switch Server

Custom Resources
owned by the

App Connect operator

© 2022 IBM Corporation

© 2022 IBM Corporation

App Connect
Operator

API Connect
Operator

MQ
Operator

Event Streams
Operator

Aspera
Operator

Cloud Pak for Integration
Operator

CP4I
Operator

© 2022 IBM Corporation

Blog series: “From IBM Integration Bus to App Connect Enterprise in containers”
Scenario 1: Deploying a simple flow on Docker
Introduces the App Connect certified container

Scenario 2: Deploying a simple flow on Red Hat OpenShift
Introduces Operators, and Configuration objects, and App Connect Dashboard

Scenario 3: Load balancing and autoscaling a simple App Connect flow
Discusses Kubernetes replication. Introduces "pods".

Scenario 4: Deploying an IBM MQ queue manager in a container
Introduces ConfigMaps and Secrets

Scenario 5: Moving an App Connect flow using MQ onto containers
Explores separation of MQ from ACE, and how to perform policy overrides

Scenario 6: Moving an App Connect flow that connects to a database onto containers
Shows the action of the Operator with multiple different Configuration types

Scenario 7: Deploying an App Connect integration on Amazon EKS
Defines the additional steps necessary to use Operators on non-OpenShift environments

The IBM App Connect Operator
Part 1 - What is an Operator and why did we create one for IBM App Connect?
Part 2 - Exploring the IntegrationServer resource of the IBM App Connect Operator
Getting Practical with Operators in IBM App Connect (webinar from TechCon 2022)

Container deployment
Comparing styles of container deployment for IBM App Connect (a.k.a baked vs fried!)

…many more coming…

© 2022 IBM Corporation

Many more coming, watch this space!
http://ibm.biz/iib-ace - please do make
suggestions on further topics in the comments.

Articles in progress:
• Fried vs baked deployment
• ACE CICD pipelines

http://ibm.biz/iib-ace

Microservice architecture

Ingredients of cloud native – an alternative grouping

Initial concepts Adoption hurdles Success factors

Agile
methods

Lifecycle
automation

DevOps and
SRE

Team
autonomy

Fine-grained
components

Appropriate
decoupling

Minimal
state

Immutable
deployment Zero

trust

Elastic, agnostic,
secure platform

Lightweight
runtimes

Operational
automation

Observability
and monitoring

Container technology

Agility through
Automation

Sustainably empowered

Secured by default

Managed in aggregate

Pe
op

le

Ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy

© 2021 IBM Corporation© 2022 IBM Corporation

Success
factors

Sustainably empowered

Secured by default Managed in aggregate

Team autonomy
• Decentralized ownership
• Technological freedom
• Self-provisioning

Zero trust
• Minimized privileges
• Implicit data security
• Shift Left for security (DevSecOps)

Observability and monitoring
• Easily accessible status
• Platform neutral logging and tracing
• Cross component correlation

© 2022 IBM Corporation

What do we mean
by Zero Trust* in

the context of this
presentation?

Approaches/strategies

Threat modelling
Think like a hacker

Defense in depth

Buzz phrases

• Identity as a
perimeter

• Micro segmentation

• Adaptive security

• …

Themes
• Assume any vulnerability will be exploited
• Don't trust anyone or anything
• Assume attackers are on the inside already

“Zero trust (ZT) is the term for an
evolving set of cybersecurity paradigms
that move defenses from static, network-
based perimeters to focus on users,
assets, and resources….”
NIST – Zero Trust Architecture (2020)
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

© 2022 IBM Corporation

* The term “zero trust” in computing has actually been around since at least
1994, but the concept and details have evolved significantly over time.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

Zero trust
Minimized privileges

• Components and people should have no privileges by default
• All privileges are explicitly bestowed based on identity

Implicit data security
• Data should always be safe, whether at rest or in transit
• Data access control should be identity based

Shift Left for security (DevSecOps)
• Security should be included at the earliest point in the lifecycle
• All environments are vulnerable, not just production

© 2022 IBM Corporation

CICD pipeline

How do you avoid bad code entering the system in the first place?

Container

Code
SCM

Container
Platform

DevOps
& SREs

Build Test Deploy Control
Plane

Operator

Include
vulnerability

tests

Container

Code

Container

Code

Container

Code

Container

Code

Release
container
repository

Container
image

Code

Access only
via SCM,
no direct

deployment

Automated
pipeline

Certified
container
repository

Only pipeline
has access to
control plane

Immutable
deployment

image

Only operator
has permissions
to deploy, and
only to specific

namespaces

namespace
1

namespace
2

Deploy to
specific

namespaces

But zero trust principles mean you can’t
assume that even this is sufficient!

© 2022 IBM Corporation

Some* perspectives
on Zero Trust

(*this is far from an exhaustive list)

1. Identity as a perimeter

2. Privileges should be minimized

3. Data must always be safe

4. Secrets…are secret

© 2022 IBM Corporation

© 2022 IBM Corporation

Cloud Native
http://ibm.biz/cloudnativedefined
https://ibm.biz/agile-integration-cloud-native

Agile Integration
http://ibm.biz/agile-integration
http://ibm.biz/agile-integration-webinar
http://ibm.biz/cp4i-security-webinar
http://ibm.biz/agile-integration-webcasts

Specific topic webinars from TechCon
• Operators
• Pipelines
• Zero Trust

Blog series: Moving to App Connect Enterprise in containers
http://ibm.biz/iib-ace

Other key links on agile integration
http://ibm.biz/agile-integration-links

Staying up to date:

https://community.ibm.com/community/user/integration

IBM Integration

https://developer.ibm.com/integration

Cloud Pak for Integration

https://www.ibm.com/cloud/cloud-pak-for-integration

http://ibm.biz/cloudnativedefined
https://ibm.biz/agile-integration-cloud-native
http://ibm.biz/agile-integration
http://ibm.biz/agile-integration-webinar
http://ibm.biz/cp4i-security-webinar
http://ibm.biz/agile-integration-webcasts
https://bzb.tools.ibm.com/TechCon2022/agenda/session/807639
https://bzb.tools.ibm.com/TechCon2022/agenda/session/814309
https://ibm.biz/cp4i-security-webinar
http://ibm.biz/iib-ace
http://ibm.biz/agile-integration-links
https://community.ibm.com/community/user/integration
https://developer.ibm.com/integration
https://www.ibm.com/cloud/cloud-pak-for-integration

Thank you.

	Cloud native �for agile integration��Murali Sitaraman�Geo-Lead Integration �IBM Automation, EMEA�msit@ch.ibm.com ������
	Evolution to agile integration
	“cloud native” means
	“Cloud native” means
	Ingredients of cloud native
	Ingredients of cloud native – an alternative grouping
	Ingredients of cloud native – an alternative grouping
	The move to containers is very different from the �preceding move to virtual machines
	Traditional vs Cloud native
	Ingredients of cloud native – an alternative grouping
	Microservice architecture – key concepts
	Fine grained deployment, Appropriate decoupling and Minimal state
	Ingredients of cloud native – an alternative grouping
	Ingredients of cloud native – an alternative grouping
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Lifecycle automation and Operational automation
	Foliennummer 22
	The role of a Kubernetes “Operator”�Translate your requirements (custom resource) into Kubernetes objects, instantiate them, and look after them
	Operator maturity model
	Example definition of an IntegrationServer custom resource object
	Example definition of an IntegrationServer custom resource object
	ACE “Configurations”�The ACE Operator provides an abstraction from how configuration is stored and processed
	What does the certified container actually do with the “Configurations”?�(using a connection to an ODBC database as an example)
	This presentation will focus on one function of the Operator for IBM App Connect for illustration purposes
	What does the App Connect Operator do?
	Foliennummer 32
	Foliennummer 33
	Foliennummer 36
	Ingredients of cloud native – an alternative grouping
	Success factors
	What do we mean by Zero Trust* in the context of this presentation?
	Foliennummer 42
	How do you avoid bad code entering the system in the first place?
	Some* perspectives �on Zero Trust��(*this is far from an exhaustive list)
	Foliennummer 54
	Foliennummer 55
	IBM sign-off

